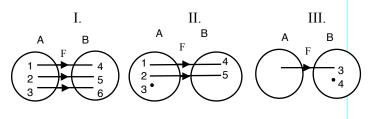
MathVantage	Algebra l	II - Exam 1	Exam Number: 032	
	PART 1: QUESTIONS			
Name:	Age:	Id:	Course:	
Algebra II - Exam	11	Lesson: 1-3		
Instructions:	1	Exam Strategies t	o get the best performance:	
• Please begin by printing your Name, your Age,		• Spend 5 minutes reading your exam. Use this time		
your Student Id, and your Course Name in the box		to classify each Question in (E) Easy, (M) Medium,		
above and in the box on the solution sheet		and (D) Difficult.		
 You have 90 minutes (class period) for thi You can not use any calculator, computer, 		• Be confident by sol then the medium qu	ving the easy questions first restions.	
cellphone, or other assistance device on th		• Be sure to check each	ch solution. In average, you	
However, you can set our flag to ask perm	ission to		ds to test it. (Use good sense).	
consult your own one two-sided-sheet not	es at any			
point during the exam (You can write cond	cepts,	• Don't waste too mu	ch time on a question even if	
formulas, properties, and procedures, but o	questions	you know how to se	lve it. Instead, skip the	
and their solutions from books or previous	s exams	question and put a c	ircle around the problem	
are not allowed in your notes).		number to work on	it later. In average, the easy and	
		medium questions t	ake up half of the exam time.	
• Each multiple-choice question is worth 5	points			

and each extra essay-question is worth from 0 to 5

points. (Even a simple related formula can worth

• Set up your flag if you have a question.

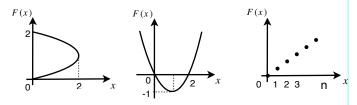
• Relax and use strategies to improve your


some points).

performance.

- Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.
- Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

1. $F : A \rightarrow B$ is a function from set A (Domain) to set B (Codomain) that:


- a) UNIQUE $y \in B \Rightarrow$ EVERY $x \in A$.
- b) UNIQUE $x \in A \Rightarrow$ EVERY $y \in B$.
- c) EVERY $y \in B \Rightarrow$ UNIQUE $x \in A$.
- d) EVERY $x \in A \Rightarrow$ UNIQUE $y \in B$.
- e) None of the above.
- 2. Which Graph(s) represent a function $F : A \rightarrow B$.

3. Which Graph(s) represent a function F on x.

$$F(x): \mathbb{R} \rightarrow [0,2] \ F(x): [0,2] \rightarrow \mathbb{R} \ F(x): [0,2] \rightarrow \mathbb{R}$$

III.

- a) Only II and III
- b) Only I and III
- c) Only I and II
- d) Only III
- e) I, II, and III are correct

4. Find the domain of the function $y = \frac{x}{x-5}$.

a) $D = \{x \in \mathbb{R} | x \neq 3\}$

- b) $D = \{x \in \mathbb{R} | x \neq 4\}$
- c) $D = \{x \in \mathbb{R} | x \neq 5\}$
- d) $D = \{x \in \mathbb{R} | x \neq 6\}$
- e) None of the above.

5. Find the domain of the real function $y = x^2$.

- a) $D = \{0\}$ b) $D = \{-5,6\}$ c) $D = \mathbb{R}$
- d) $D = \{-5, 0, 2, 3, 6\}$
- e) None of the above.

6. Find the domain of the real function $y: D \to \mathbb{R}$ such that $y = \sqrt{9 - x^2}$.

- a) $D = \{x \in \mathbb{R} \mid x \le -3 \text{ or } x \ge 3\}$
- b) $D = \{x \in \mathbb{R} \mid x \le -4 \text{ or } x \ge 4\}$
- c) $D = \{x \in \mathbb{R} / -3 \le x \le 3\}$
- d) $D = \{x \in \mathbb{R} \mid -4 \le x \le 4\}$
- e) None of the above.

7. Find the domain of the real function $y : D \to \mathbb{R}$ such that $y = \frac{1}{\sqrt{9 - x^2}}$.

- a) $D = \{x \in \mathbb{R} \mid x < -3 \text{ or } x > 3\}$
- b) $D = \{x \in \mathbb{R} \mid x < -4 \text{ or } x > 4\}$
- c) $D = \{x \in \mathbb{R} \mid -3 < x < 3\}$
- d) $D = \{x \in \mathbb{R} \mid -4 < x < 4\}$
- e) None of the above.

8. Let $F : A \rightarrow B$ be a function such that:

F is even \Rightarrow F(-x) = F(x) for $\forall x \in A$. F is odd \Rightarrow F(-x) = -F(x) for $\forall x \in A$.

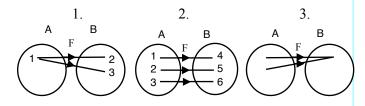
I. $F(x) = -3x^2 + 7$ is even.

II.
$$F(x) = \sqrt{(x)^2}$$
 is even.

- III. F(x) = |x| is even.
- a) Only I and II are correct
- b) Only I and III are correct
- c) Only II and III are correct
- d) I, II, and III are correct
- e) None of the above.

9. Let $F : \mathbb{R} \to \mathbb{R}$ be a function such that:

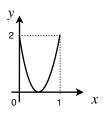
$$f(x) = \begin{cases} 1 & \text{for } x \le -1 \\ 0 & \text{for } -1 < x < 1 \\ -1 & \text{for } x \ge 1 \end{cases}$$


Given e = 2.71 and $\pi = 3.14$. Calculate:

 $\frac{f(e) + f(-e)}{f(\pi) + f(-\pi)} = ?$

- a) Undefined.
- b) 0
- c) 1
- d) 2
- e) 3
- 10. $F : A \rightarrow B$ is an injective function (one-to-one) if: (Notation: "Im" is the image of F).
- a) $x_1 \neq x_2 \Rightarrow F(x_1) \neq F(x_2); \forall x_1, x_2 \in A.$
- b) $\exists x_1, x_2 \in A$ such that $F(x_1) = F(x_2)$.
- c) Im = B.
- d) $Im \neq B$.
- e) None of the above.

11. Let $F : A \rightarrow B$ be a relation between A and B.


Assume: I) Injective function S) Surjective function B) Bijective function N) Not a function.

Then:

- a) 1-N, 2-S, and 3-B
- b) 1-N, 2-B, and 3-S
- c) 1-I, 2-S, and 3-N
- d) 1-N, 2-S, and 3-B
- e) None of the above.

12. Given the graph $y : [0,1] \rightarrow \mathbb{R}$:

- a) y is surjective.
- b) *y* is injective.
- c) y is bijective.
- d) y is not a function.
- e) None of the above.
- 13. Let $y : \mathbb{R} \to \mathbb{R}$ be a function such that y = -2x + 1. The inverse function y^{-1} is:

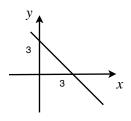
a)
$$y^{-1} = \frac{x-6}{2}$$

b) $y^{-1} = \frac{-x+1}{2}$
c) $y^{-1} = \frac{-x+2}{3}$
d) $y^{-1} = \frac{x+3}{5}$

e) None of the above

14. Let
$$f : \mathbb{R} - \{0\} \to B$$
 such that

$$f(x) = \frac{x+3}{3x}$$

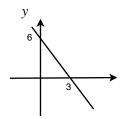

The Im_f is: Hint: $Im_f = D_{f^{-1}}$ (Image of f is the domain of its inverse f^{-1}).

- a) $Im_f = \{y \in \mathbb{R} \mid y \neq 1\}$ b) $Im_f = \{y \in \mathbb{R} \mid y \neq \frac{1}{2}\}$ c) $Im_f = \{y \in \mathbb{R} \mid y \neq \frac{1}{3}\}$
- d) $Im_f = \{y \in \mathbb{R} \mid y \neq \frac{1}{4}\}$
- e) None of the above.

15. Given:

- I. $y = 3 \sqrt{x}$
- II. y = |x|
- III. y = 2.
- a) Only I is a linear function.
- b) Only II is a linear function.
- c) Only III is a linear function.
- d) Only II and III are a linear function.
- e) None of the above.

16. Given the graph $y : \mathbb{R} \to \mathbb{R}$.


Then, the slope of *y* is:

a)
$$m = -\frac{3}{2}$$

b) $m = \frac{3}{2}$

$$m = \frac{1}{4}$$

- c) m = 3
- d) m = -1
- e) None of the above.

17. The function of the graph $y : \mathbb{R} \to \mathbb{R}$ is:

a) y = -2x + 6

b)
$$y = -x + 4$$

- c) y = 3x
- d) y = 3x 6
- e) None of the above.

18. Given the straight line (*r*) y = 3x + 2. Find a straight line (*s*) that is parallel to the straight line (*r*) and passes through the point A(0,1).

- a) y = 2xb) y = -3x + 4c) y = 3x + 1d) y = -xc) None of the observation
- e) None of the above.

19. Given:

(r)
$$y = \alpha^2 x + \pi$$
, where $\pi = 3.14$ and $e = 2.71$.

(s) y = x - e

Find α such that (*r*) is parallel to (*s*).

a) $\alpha = -1$ or $\alpha = 2$ b) $\alpha = 0$ or $\alpha = 1$ c) $\alpha = -2$ or $\alpha = 1$ d) $\alpha = 0$ or $\alpha = -1$ e) None of the above.

20. Given:

(r) $y = (\beta + 1)x + \sqrt[3]{2}$, where $\pi = 3.14$ and e = 2.71.

(s)
$$y = -2x - \sqrt[3]{2}$$

Find β such that (*r*) is perpendicular to (*s*).

a) $\beta = 1$ b) $\beta = -1$ c) $\beta = 4$ d) $\beta = -\frac{1}{2}$ e) None of the above.

ame: Mu Questions 1 2		oice An			[2: SOLUTI(Age:	Id:	
Mu Questions 1	ltiple-Ch	oice An			Age:		
Questions 1			swer	S		Extra Quest	tions
1	A B	С		Multiple-Choice Answers			
		· · · ·	D	Е	21.0	Calculate the doma	in of y:
2							
					<i>y</i> =	$\frac{x+2}{\sqrt[3]{x}}$	
3						VX	
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							2 1
17					22.]	$\operatorname{Let} f: [-1,1] \to \mathbb{F}$	\mathbb{R} such that: $f(x) = \frac{5}{2}x + \frac{1}{2}$.
18					Find	the image of <i>f</i> . (H	int: Draw a graph)
19							
20							
15 16 17 18 19					22. I Find	Let $f : [-1,1] \rightarrow \mathbb{F}$ I the image of f . (H	R such that: $f(x) = \frac{3}{2}x + \frac{1}{2}$. Tint: Draw a graph)

Extra Points

Consulting

Age Points

Total Performance

Grade

25

10

25

160

Α

23. Give one example of a bijective function.

25. Given:

$$f(x) = \frac{x+1}{x-2}$$

Find the domain (D_f) and the image (Im_f) .

24. Find the graph of the linear function:

$$\frac{x}{2} + \frac{y}{7} = 1$$